Posts on affair

機械学習用データから分かる、不倫への明暗を分ける5つの要因。

興味本位で始めた、機械学習用不倫データセットと、Pythonの機械学習ライブラリscikit-learnを使って、愛妻の不倫を予測した前回の続き。(疑っているわけじゃないです) 結局、どのパラメータが不倫の大きな要因なのか? 不倫を避けるにはどうすればいいのか? と疑問に感じた人が調べるのは、係数(coefficient)です。 詳しい話はUdemyの実践 Python データサイエンスの講習やWikipediaを参照するとして、ざっくり言うと、「旦那の職業」「妻本人の職業」「子供の人数」・・・などの係数のうち、どれが目的変数(妻が不倫するかしないか)を決定するのに最も影響力を持つか、と解釈しました。 係数は、前回作ったロジスティック回帰modelに格納されているので、一目でわかるように可視化します。 from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import train_test_split # トレーニング用データと確認用データを分離 X_train, X_test, Y_train, Y_test = train_test_split(X, Y,…

「不倫」データセットを機械学習して妻の説明変数パラメータを与えたところ、結果は…

結果はシロでした! 不倫しないそうです。(本人に結果報告したら「わかんないよ」と言われましたが…) まずは学習データをロードします。 import pandas as pd import numpy as np from pandas import DataFrame, Series import statsmodels.api as sm X = sm.datasets.fair.load_pandas().data 学習データに対する正解を作ります。 未知のデータ(妻パラメータ)に対する不倫するか(1)しないか(0)の結果を知りたいんですよね。 def is_affairs(affairs): return 1 if affairs > 0 else 0 Y = X.affairs.apply(…